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Accuracy of Microwave Cavity
Perturbation Measurements

Richard G. Carter, Member, IEEE

Abstract—Techniques based on the perturbation of cavity
resonators are commonly used to measure the permittivity and
permeability of samples of dielectric and ferrite materials at
microwave frequencies. They are also used to measure the local
electric- and magnetic-field strengths in microwave structures
including the shunt impedances of cavity resonators and the
coupling impedances of slow-wave structures. This paper reex-
amines the assumptions made in the theory of these techniques
and provides estimates of the errors of measurement arising from
them.

Index Terms—Cavity perturbation measurements, microwave
measurements.

I. INTRODUCTION

WHEN A small object is introduced into a microwave
cavity resonator, the resonant frequency is perturbed

[1], [2]. Since it is possible to measure the change in frequency
with high accuracy, this provides a valuable method for mea-
suring the electric and magnetic properties of the object if the
properties of the cavity are known, or for characterizing the
cavity if the properties of the perturber are known. Techniques
based upon this principle are in common use for measuring the
dielectric and magnetic properties of materials at microwave
frequencies [3]. They also used for measuring the local electric-
and magnetic-field strengths within microwave structures and
especially for finding the shunt impedances of cavity resonators
for use in klystrons and particle accelerators and the coupling
impedances of slow-wave structures for use in traveling-wave
tubes and linear accelerators [4]–[6]. The theoretical basis of
these measurements is well established, but involves some
simplifications. This paper reexamines these assumptions
and approximations to show the effect that they have on the
accuracy of the measurements.

II. THEORY

The theory of the perturbation of cavity resonators has
been given by a number of authors. The treatment given here
is essentially that presented by Waldron [1], but with some
differences that maintain the symmetry of the equations. We
shall study the properties of two identical cavity resonators
containing nonconducting perturbing objects. Let the fields
in the two cavities be and and
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and . Making use of Maxwell’s curl
equations, we obtain

(1)

(2)

Taking the scalar product of with (1) and with (2) and
subtracting gives

(3)

However,

(4)

Therefore,

(5)

Integrating (5) over the volume of the cavity, and making use
of Gauss’ theorem

(6)

yields

(7)

where is the surface of the cavity and its volume. By a
similar argument, exchanging the subscripts, we obtain

(8)

If the walls of the cavity can be regarded as perfectly con-
ducting, then is normal to the wall and is tangential to the
wall. Thus, the vector products are tangential to the wall and the
left-hand sides of (7) and (8) are zero. Equating the right-hand
sides of (7) and (8) and rearranging gives

(9)
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If we now assume that the cavity with subscript zero is empty
and let , (9) can be rearranged to give

(10)

The integrand in the numerator of this equation is zero every-
where outside the volume of the perturbing object. We may,
therefore, restrict the volume of integration to the volume of the
object denoted by . Thus,

(11)

The only assumption that has been made thus far is that the
cavity walls are perfectly conducting. There is no restriction on
the size or shape of the perturbing object, or of its material,
provided that it is not conducting. The symmetry of (11) ensures
that its validity is independent of the magnitudes of the fields in
the two cavities. For a nonmagnetic object, the second bracket
in the numerator of (11) is zero and

(12)

If we set and, similarly for the other variables,
(11) becomes

(13)

Equations (11)–(13) cannot be applied directly because it is
not normally possible to find closed-form expressions for the
fields in the perturbed cavity. In order to derive a useful formula,
certain approximations must be made.

Assumption 1:The perturber is made of homogeneous
isotropic material so that and can be expressed in terms
of , and the permittivity and permeability of the material.
Equation (11) becomes

(14)

Assumption 2:The perturbation is small so that the second
term in the denominator of (13) can be neglected. Equation (14)
becomes

(15)

This assumption has removed the symmetry of the equation
so that the frequency perturbation is dependent on the relative
amplitudes of the fields in the empty and perturbed cavities.
The denominator is recognized as , where is the stored
energy in the empty cavity.

Assumption 3:The perturber is small enough forand to
be effectively constant within it so that the numerator is equal to
the integrand multiplied by the volume of the perturber. Equa-
tion (15) becomes

(16)

Assumption 4:The - and -fields outside the perturber are
unchanged by its presence and those within the perturber can
be determined from the boundary conditions at its surface. This
enables simple expressions for the frequency perturbation to be
derived in two cases.

A. Long Thin Cylindrical Dielectric Rod Aligned Parallel to

Since the tangential electric field is continuous at the surface
of the rod ( ), it follows that , and since ,
(16) reduces to the usual approximate formula for perturbation
of the frequency by a thin dielectric rod

(17)

where is the magnitude of on the axis and is the length
of the rod.

B. Dielectric Sphere

Under the quasi-static approximation, the electric field within
a dielectric sphere placed in a uniform external electric field
is given by [7]

(18)

Substitution of this expression into (16) and taking
yields the usual expression for the perturbation of the frequency
by a small dielectric sphere

(19)

where is the radius of the sphere.
It is generally assumed that these approximate expressions

are accurate enough for most purposes, but the range of validity
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Fig. 1. Pill-box cavity resonator perturbed by: (a) a dielectric rod and (b) a
dielectric sphere.

of the assumptions has not been checked. In the following sec-
tions, we examine this problem by comparing the approximate
solutions with those obtained by direct application of (12).

III. PERTURBATION OF A PILL -BOX CAVITY BY A

DIELECTRIC ROD

Consider a pill-box cavity, excited in the mode, which
is perturbed by a cylindrical dielectric rod placed along its axis,
as shown in Fig. 1(a). The general solutions for the electric field
inside and outside the rod are

(20)

(21)

where , and are constants, and are the Bessel func-
tions of the first and second kinds, and , where is
the velocity of light in vacuum. We can choose without
loss of generality. The constantsand are determined by re-
quiring that and are continuous at the surface of the
rod so that

(22)

(23)

Fig. 2. Comparison of the resonant frequency of a pill-box cavity, perturbed
by a dielectric rod, computed by exact and approximate methods. (a)" = 2.
(b) " = 5. (c) " = 10.

The requirement that is zero at yields the determi-
nantal equation

(24)

This equation can be solved numerically1 to obtain and
for given values of , , and .

For the empty cavity, we note that

(25)

Since the solutions scale directly with the dimensions, we can
display the ratio against for various values of , as
shown in Fig. 2.

In the empty cavity, the electric field is given by

(26)

1The results presented in this paper were obtained using Mathcad8.
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and the magnetic field by

(27)

In the perturbed cavity, the magnetic field is

(28)

inside the rod and

(29)

outside the rod.
When the fields defined by these equations are substituted

into (12), the results are identical to those obtained from (24).
The stored energy in the empty cavity is given by

(30)

Substituting this expression into (17), and noting that ,
we obtain

(31)

The frequency ratios computed from (31) for relative permit-
tivities of two, five, and ten are compared with the exact results
in Fig. 2. It is seen that there is good agreement between the
two sets of results if and that the agreement de-
teriorates as increases and as the relative permittivity in-
creases. The accuracy is revealed more clearly in Fig. 3(a) and
(b), which show the error in the approximate solutions for the
ranges and , respectively. If the
normalized rod diameter is less than 0.1, the approximate solu-
tion is accurate to better than 1% for . If , the
difference between the exact and approximate formula is negli-
gible. However, these results conceal possible sources of error,
which make it unwise to assume that the same accuracies will
apply to other shapes of the perturbing object.

Fig. 4 shows comparisons between the numerators and de-
nominators of the exact and approximate expressions [see (12)
and (17)]. From these, it is clear that the apparent accuracy of
(17) is a consequence of the balancing of approximately equal
errors in the numerator and denominator. These errors lie in the
1%–30% range for the cases investigated. Thus, the assumption
that the second term in the denominator of (13) can be neglected
is not as valid as has been generally supposed. The physical ex-
planation of this result is that the electric field within the rod is
overestimated by assumption 3 since the radial variation of the
field within the rod has been neglected. The field outside the
rod is reduced by the presence of the rod so that assumption 2
causes the denominator to be overestimated. It is fortuitous that
the errors compensate each other in this case, but it is not safe to
assume that a similar cancellation will occur in other cases. It is,
therefore, possible that measurements made using perturbation
methods may be in error by several percent.

One of the main uses of this theory is to determine the rela-
tive permittivities of samples of dielectric material in the form
of rods. Since the method relies on the frequency perturbation
caused by the rod, it is sensitive to quite small errors in the value
of the perturbed frequency. This is illustrated in Fig. 5, in which

Fig. 3. Error in the resonant frequency of a pill-box cavity, perturbed by a
dielectric rod, computed by the approximate method. (a) Forb=a � 0:1 and (b)
b=a � 0:2 for relative permittivities:" = 2 ( ), 5 (- - - - -), and10 (. . .).

values of the frequency perturbation obtained from the exact
theory have been used to obtain the relative permittivity from
(31). It can be seen that appreciable errors occur when the rela-
tive permittivity is calculated by the approximate method.

IV. PERTURBATION OF A PILL -BOX CAVITY BY A

DIELECTRIC SPHERE

When a dielectric sphere is placed in a uniform electric field,
the field within the sphere is given by (18) and the additional
electric-field components outside the sphere produced by the
polarization of the sphere are [7]

(32)

(33)

in spherical polar coordinates.
We will assume that the dielectric sphere is placed on the axis

of a pill-box cavity, as shown in Fig. 1(b). In order to be able to
compute the frequency perturbation from (12), it is necessary to
make two assumptions.

Assumption 5:The sphere is small enough for the field in
which it is placed to be effectively constant. If we require the
variation of the field to not be more than 1% over the space
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Fig. 4. Comparison between the numerators and denominators of the exact
and approximate formulas for computing the resonant frequency of a pill-box
cavity, perturbed by a dielectric rod. (a)" = 2. (b) " = 5. (c) " = 10.

Fig. 5. Error in the calculation of the relative permittivity of a dielectric
rod using the approximate formula for relative permittivities:" = 2 ( ),
5 (- - - - -), and10 (. . .).

occupied by the sphere, then and, thus,
. For a 5% field variation, .

Assumption 6:The sphere is small enough for the perturba-
tion of the external field to be effectively zero on the boundary

Fig. 6. Comparison of the resonant frequency of a pill-box cavity, perturbed
by a dielectric sphere, computed by exact and approximate methods. (a)" = 2.
(b) " = 5. (c) " = 10.

of the cavity. If we set a limit of 1% on the perturbation, then
and . Thus, for most cavities, the second con-

dition will be satisfied whenever the first condition is true.
The field components outside the sphere are given, in cylin-

drical polar coordinates, by

(34)

(35)

where is the as yet unknown perturbed frequency. The re-
maining field components are not required because their inner
products with the unperturbed field components are zero. Within
the sphere, for consistency, we must take and
. Equation (12) can then be evaluated numerically to obtain

values for the frequency perturbation, which are exact for small
spheres. Fig. 6 shows how the ratio of the perturbed to the un-
perturbed frequency depends upon the radius and the relative
permittivity of the sphere, as found from the approximate and
exact calculations. Since we have used the same expression for
the electric field inside the sphere for both the approximate and
exact calculations, it follows that Fig. 6 shows the effect of ne-
glecting the second term in the denominator of (13) in this case.
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Fig. 7. Error in the magnitude of the electric field in a pill-box cavity,
perturbed by a dielectric sphere, computed by the approximate method for
relative permittivities." = 2 ( ), 5 (- - - - -), and10 (. . .).

The error introduced by this assumption is much less than in
the case of perturbation by a rod because of the much smaller
change in the fields outside the perturber.

Perturbation measurements using a dielectric sphere are com-
monly used to determine the electric-field distribution within a
microwave structure. By substituting the frequency perturbation
computed from (12) into (19), we can find the error in the de-
termination of the field. The results of this calculation in Fig. 7
show that the error is less than 1% for typical sizes of sphere.

V. CONCLUSIONS

The results presented in this paper have shown that the as-
sumptions made in the approximate theory of the perturbation
of cavities by dielectric objects are not always valid. In partic-
ular, we have seen that the figures for the relative permittivity
of dielectric rods may be in error by 5% for typical rod sizes.
If the method is used to find the relative permittivity of rods
having a uniform, but noncircular cross section, it is likely that
similar accuracies will be obtained. When perturbation methods
are used to characterize cavity resonators and other microwave
structures, it is likely that the relative permittivity of the per-
turber will have been obtained by a perturbation measurement.

In that case, the errors in measurement should be small provided
that the same assumptions were made in interpreting both mea-
surements and that the assumption that the perturber is located
in a region of an uniform electric field is satisfied to a good ap-
proximation.
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